Nanotechnologies et traitement du cancer
Le symposium organisé le 5 octobre par l’INCa et les instituts « Cancer » et « Technologies pour la santé » de l’INSERM avait pour objectif d’accélérer le transfert des nanotechnologies au diagnostic, au pronostic et au traitement des cancers. Il a réuni une centaine de chercheurs venus d’Europe et des Etats-Unis.
Depuis qu’il existe des traitements contre le cancer, le défi consiste à les acheminer dans les tissus malades sans empoisonner le corps entier. Des études ont par exemple montré que, lorsque 100 000 molécules d’anticorps monoclonaux sont injectées en intraveineuse dans la circulation sanguine, moins d’une dizaine d’entre elles atteignent leur cible.
L’avènement des nanostructures artificielles permet d’imaginer des « nanovecteurs » susceptibles de relever ce vieux défi: conçus pour atteindre des cibles prédéterminées, ils portent en leur sein un agent thérapeutique (voire plusieurs) dont la libération ne s’opère que localement, au sein de la tumeur ou de son micro-environnement.
Les nanovecteurs : la livraison des agents thérapeutiques
Les nanoparticules peuvent être fabriquées à partir de polymères, de métaux, de céramiques… On peut aussi faire appel à des liposomes, qui sont des structures colloïdales fermées s’auto-assemblant autour d’un espace central aqueux. Pour leur utilisation en nanovecteurs, il faut d’abord parvenir à éviter qu’elles soient détruites par le système immunitaire avant d’accomplir leur tâche thérapeutique.
Il faut également les doter d’une fonction qui leur permette d’atteindre leur cible. Le choix de leur taille relève déjà d’un ciblage qu’on qualifie de passif: entre 10 et 100 nm, les particules peuvent voyager dans le flux sanguin et ne traversent pas la paroi des vaisseaux sanguins pour s’échapper dans les tissus sains; par contraste, les tumeurs sont environnées par des vaisseaux anormaux dont les parois comportent de larges pores laissant passer les particules de cette dimension. Par ce simple effet physique, les nanoparticules ont ainsi tendance à s’accumuler dans les tumeurs.
Un autre effet de nature physique facilite la livraison des agents thérapeutiques à l’intérieur des cellules. Lorsqu’une molécule pharmacologique parvient, de façon traditionnelle, à entrer dans une cellule, des protéines de pompe cellulaire peuvent l’éjecter avant qu’elle ait eu une chance d’exercer son effet. Or, en raison de leur dimension, les nanoparticules pénètrent dans les cellules par endocytose, un processus naturel qui crée une poche de membrane cellulaire autour d’un objet étranger pour l’attirer à l’intérieur: ceci
a pour effet de protéger la charge thérapeutique, contenue dans la nanoparticule, de l’action des pompes cellulaires.
Le ciblage actif consiste à incorporer, sur la surface des nanoparticules, une molécule destinée à se lier spécifiquement à un antigène ou à un récepteur qui est exprimé de façon préférentielle à la surface des cellules tumorales. Comme pour le diagnostic in vivo, le problème consiste à identifier les antigènes et les récepteurs pertinents.
Un dernier champ thérapeutique émergent est celui de la médecine régénérative. Leur complexité chimique et structurelle permet de doter les nanoparticules de capacités de régénération tissulaire, ouvrant ainsi la possibilité de protéger l’organisme des toxicités induites par la chimiothérapie et la radiothérapie classiques, voire de le réparer.
Source : INCa